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Abstract. This study used statistical simulations to investigate the performance of the
population bioequivalence test applied to image-based particle size measurements (such as
morphologically directed Raman spectroscopy) and methods for designing in vitro bioequiv-
alence trials using prior information. Simulations of in vitro population bioequivalence trials
were conducted across a range of representative Dso (number-weighted median particle
diameter from a log-normal particle size distribution) and span (which is defined as Dgg);f“’
where Dy, and D are the number-weighted 90th and 10th percentiles in particle diameters
sampled from a log-normal particle size distribution) values respectively. The performance of
the population bioequivalence test in the simulations was driven by an interplay between
overall test variability and the widening or narrowing of the bioequivalence region due to
variance terms in the test statistic definition. These findings were dependent upon differences
in the variability of D5y and span and may generalise to a wider range of in vitro metrics. Trial
design optimisation using power and assurance approaches followed patterns consistent with
these findings. As more novel scientific methods are applied to the development of complex
generic drug products, the procedures outlined in this study may be used at the inception
stage of future in vitro bioequivalence trials to reduce the risk of conducting costly trials with
low probabilities of success.

KEY WORDS: orally inhaled and nasal drug products; particle size distribution; population

bioequivalence; simulation.

INTRODUCTION

The determination of bioequivalence between complex
locally acting drug products is challenging and continues to
hinder generic entry to the market for many orally inhaled
and nasal drug products (OINDPs). Bioequivalence is defined
as equivalence in the rate and extent at which the active
pharmaceutical ingredient (API) becomes available at the site
of action (1). For locally acting drug products, such as
OINDPs, bioequivalence is currently demonstrated through
a combination of in vitro, pharmacokinetic, and comparative
clinical endpoint tests (2,3). In 2017, FDA pledged to reduce
the “hurdles” for generic product development (4) which has
involved the publication of several revised product-specific
guidance (PSG) documents for OINDPs, some of which
include alternatives to comparative clinical endpoint tests
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which could reduce the testing burden on generic drug
product development whilst maintaining accuracy in bio-
equivalence determinations. In 2016, measurements of API
particle size distribution by morphologically directed Raman
spectroscopy (MDRS) provided a measure of in vitro bio-
equivalence in the approval of a generic mometasone furoate
nasal spray for marketing by FDA where in vitro bioequiv-
alence eliminated the need for a comparative clinical
endpoint study (5).

Any measure of bioequivalence, be it in vivo such as
maximum plasma concentration or in vitro such as median
particle diameter, must be accompanied by a statistical
approach which can confirm equivalence with a controlled
error rate. The FDA guidance Statistical Approaches to
Establishing Bioequivalence (6) details average bioequiva-
lence (ABE, which considers only the difference in test and
reference product means), population bioequivalence (PBE,
which considers the difference in test and reference product
means and the between-subject or between-unit variances),
and individual bioequivalence (IBE, which considers the
difference in test and reference product means and the
within-subject or within-unit variances). Multiple comparisons
of ABE and PBE have been conducted (7-9) generally
showing that the tests perform similarly apart from when
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product variances are relatively large as this dominates the
PBE result. PBE is recommended in the Bioavailability and
Bioequivalence Studies for Nasal Aerosols and Nasal Sprays
for Local Action (10), and multiple PSGs for metered dose
inhalers and dry powder inhalers (11,12) so will be the focus
of this study.

It was reported almost a decade ago that the design of
in vitro bioequivalence trials should be tailored to the
predicted product properties rather than prescribed (13).
More recently a series of thorough investigations into the
performance of the PBE test, including the analyses of large
databases containing delivered dose and impactor stage mass
data from many inhaled products (8,14,15), have uncovered a
number of key properties. The first is that OINDP perfor-
mance metrics such as impactor stage mass (15) and delivered
dose (14,15) are normally distributed which breaks the
assumption of log-normality in the PBE test. The conse-
quence of performing the PBE test on normally distributed
data is an asymmetry in PBE power where test and reference
product pairs for which the test product mean is higher than
the reference product mean have a higher probability of
determining equivalence than the opposing case. The addi-
tion of between-batch (8) variance and within-container
variance (arising from replicate measurements) (13) to the
calculation method suggested in the FDA PSG on
Budesonide (16) has also been investigated. It was shown
that including both between- and within-batch variance in the
PBE procedure increased the true positive and decreased the
false negative rates when between-batch variability was
present (8); however, the authors were keen to state that this
did not address the issue of the asymmetry in the PBE test
when applied to normally distributed measures (8). The
application of PBE has recently been extended to other
metrics such as distance measures for the comparison of non-
monomodal size distributions (17).

Following the precedent set by the approval of a generic
mometasone furoate (5), it is expected that future similar
generic approvals will be based in some part on a wider range
of in vitro techniques. Techniques that could emerge are
included in the “Alternative approach to the comparative
clinical endpoint BE study” section of multiple recently
revised FDA PSG documents (11,12,18). It is pertinent that
statistical tests for bioequivalence applied to these novel
methods are effective, well understood, and appropriately
applied. Once adopted, bioequivalence trials using novel
performance metrics will require careful design to ensure an
adequate chance of determining BE when it is true and
avoiding costly underpowered trials. A number of PSGs for
OINDPs quote a minimum of 3 batches and 10 containers per
product per trial (12,16); however, designs that are case
specific can be more effective (13).

In this paper, we use statistical simulations to explore the
performance and design of PBE trials comparing particle size
distributions using median particle size (Dso) and span
metrics which are the typical outcomes of API-specific
particle size distributions measured using MDRS and were
included in the approval of a generic mometasone furoate
nasal spray (5). The simulation approach can be generalised
to other in vitro metrics and builds on previous work (19) to
design trials from prior knowledge where uncertainty in
product performance is considered.
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METHODS
Population Bioequivalence Test

The PBE test is defined as (16):

(ur—pr)’ + (o1-0R)’
max (%, 0%, )

<0 (1)

or in the linearised form:

(ur—pr)” + (07—0))—0max(o%,07)) < 0 (2)

where pr and pur are the means of the log-transformed
measured test and reference variables respectively, o and og
are their corresponding standard deviations, oo =0.1, and 6
is the PBE criterion defined as 2.089 which approximately
captures pr=90% and pgr =100%, o3 = 0.02 and o} = 0.01.
A test and reference product is deemed bioequivalent in a
PBE trial when the 95% confidence interval of the linearised
criterion (calculated as shown in reference (16)) is below 0.

Statistical Model

The in vitro measurements investigated in this study were
the number-weighted median particle diameter from a log-
normal particle size distribution (Dsp) and the span which is

defined as 2 ()EOD 0 where Doy and Dy are the number-weighted

90th and 10th percentiles in particle diameters sampled from a
log-normal particle size distribution. Individual measurements
were simulated by assuming that one measurement samples
individual diameters from a population log-normal size distri-
bution with characteristic geometric mean (upso) and geometric
standard deviation (defined as log(2)) which are both subject to
batch, container, lifestage, and unexplained variation.

Sampling distributions for the D5, and span metrics were
used in the model for computational efficiency, rather than
generating individual particle diameters from the parent popu-
lation. The D5, sampling distribution was estimated as shown
below (20). The span sampling distribution was estimated by
fitting polynomial expressions to empirical values obtained by
summarising randomly generated samples of diameters and is
detailed in the supplementary information.

In each simulated trial, a Dsy or span was generated for
each product, batch, container, and lifestage combination
using the following multi-level model:

Dso~N (1pso, Thso) 3)

Upso = Mi + Bwj + Cmk(j) + Lt + €mijr (4)
1

Opso = (5)

anf,y (M, 22>2
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Pan~LN (Hpan (1, 3), 0200 (1, 3)) (6)

log(2) = log(Z) + By j + Cs i(j) + L jjit + €3 4k (7)

where n is the number of particles sampled, fin is the log-
normal probability density function, M, is the logarithm of the
average geometric mean of product i (test or reference), By
is the normally distributed mean zero batch effect, Cy; is the
normally distributed zero mean container (nested in batch)
effect, Ly is the normally distributed zero mean lifestage
effect, and €y is the unexplained variation which is normally
distributed with mean zero. 3 is the logarithm of the
geometric standard deviation of the particle size distribution,
3, is the average effect of product i (test or reference), and
By, Cs, Ly, and ey are defined as for M. ijkl refers to the ith
product, jth batch, kth container, and /th lifestage.

Simulation Strategy

PBE Test Performance

Multiple scenarios were simulated capturing the sensitiv-
ity of the PBE test performance to different aspects of the
true product characteristics. The impact of total variance,
variance distribution (amongst batch effect, container effect,
and unexplained variance), lifestage effects, and number of
particles were studied.

Unless otherwise specified, the median particle diameter
was fixed at 2.5 um and the geometric standard deviation was
fixed at 1.5, the total variance was defined by fixing the
relative standard deviation (RSD) at 12% for the M and 4%
for log(Y), the distribution of the total variance amongst
batches, containers, and unexplained variation was 0.2, 0.4,
and 0.4 respectively, and no lifestage effect was assumed.

In each simulated trial, 5000 sets of test and reference
D5y and span values were generated using the model
described by Egs. 3-7 and tested for PBE using the method
described in reference (16). The fraction of passing trials were
then reported for each combination of parameters. For
example, in a trial with 3 batches, 10 containers, and 3
lifestages, 90 Dso values would be generated for the test
product and 90 for the reference product, these values would
be tested for population bioequivalence, and the process
repeated a total of 5000 times. Unless otherwise specified, the
number of containers was fixed at 10, the number of lifestages
was fixed at 3, and the number of batches was fixed at 3.

Power and Assurance Calculations

Power and assurance were calculated to represent the
progression from a small-scale feasibility study to a full
in vitro bioequivalence trial. First, a small set of test and
reference product Ds, data were simulated from the model
described by Eqs. 3-7. The test product average Ds, was
2.55 pm (102% of the reference average which for identical
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variance is within definition of population bioequivalence),
and the distribution of the total variance amongst batches,
containers, and unexplained variation was 0.4, 0.4, and 0.2
respectively. All other parameters were fixed as described
above. Two batches, 2 containers, and 3 lifestages were
simulated for a total of 12 simulated measurements per
product.

The simulated feasibility scale data were then fitted to a
series of simplified models, capturing either the product effect
alone, the product effect alongside the batch effects, or the
product effect, batch effect, and container effect. Lifestage
effects were not considered. The simulated data was fitted by
Bayesian inference using Stan 2.19.1 (21) via the R package
rstan 2.19.3 (22) and the convenience functions in the
rethinking 2.0 package (23) and the following prior distribu-
tions describe the most detailed model (other models were
constructed by removing terms).

Dso~N (1pso, Thso) (8)
kpso =M + Bi + C; )
M~N(3,1.2%) (10)
Bi~N(0,0%) (11)

C;~N(0,0¢) (12)

o ps0, 0B, oc~Exponential(1) (13)

where Ds is the observed variable, M is the product mean of
the observed variable, B; and C; are the ith and jth batch and
container effects respectively, opso is the residual standard
deviation in the observed variable, and o and o. are the
standard deviations of the batch effect and container effects
respectively.

The models were compared using the widely applicable
information criterion (WAIC), and a model was selected for
the test and reference products separately. Power was
calculated by simulating pairs of test and reference datasets
from the selected model where the values of M, opsg, o5, and
oc were fixed at the means of their posterior distributions. A
total of 10,000 datasets were simulated for 2-20 batches, 2-20
containers, and 1-3 lifestages, the PBE test performed, and
the power for each sampling configuration was equal to the
fraction of passing trials. The assurance was calculated in a
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similar manner; M, o psg, g, and o were treated as random
variables and sampled from their posterior distributions at
each simulation run, therefore capturing uncertainty in the
parameters. It should be noted that the large variance in these
simulations resulted in some simulated datasets producing
negative diameters which were rejected. The minimum
number of runs for a single configuration was 8048 for
assurance and 9980 for power.

All data were simulated using R 3.6.1 (24) and visualised
using ggplot2 3.2.1 (25), and metR 0.7.0 (26) was used to add
labels to the contour plots.

RESULTS

Statistical simulations following the method described
above were conducted for a variety of parameter combina-
tions. In each case, the reference product D5, and GSD were
fixed at 2.5 pm and 1.5 respectively. The test product Ds,
varied from 0.6 to 1.4 times the reference product value and
the test product GSD from 0.8 to 1.2 times the reference
product value.

Figure 1 shows an example Ds, simulation result for
RSDs of 10% and 14%. The simulation results show a
previously reported asymmetry in the fraction of passing
trials about a test/reference ratio of 1 (8,14) where ratios
below this have a lower fraction of passing trials than the
equivalent ratios greater than 1. To concisely summarise the
results of multiple simulations, the average power (AP) was
calculated for each, which is the mean of the fraction of
passing trials in the bioequivalence region across all test
product Ds, or span values simulated (the points within the
corresponding boxes in Fig. 1).

Total Product Variance

The AP for simulations of different test/reference RSD
pairs and different numbers of batches for both D5y and span
are shown in Fig. 2. Increasing the RSD reduces the AP for
both metrics. In cases where the test and reference RSDs are
equal, an increase in the total number of batches tested can
counteract the low AP for variable products. For asymmetric
test and reference RSDs (the rightmost two points in Fig. 2),
the power increases where the test product RSD is greater
than that of the reference product and the reverse is true for
the opposing case.

Product Variance Pattern

The distribution of the variance amongst batch effects,
container effects, and unexplained variance also impacts the
results of PBE tests. The AP for 4 different variance patterns
are shown in Fig. 3. Note that where the batch and container
fractions do not total 1.0, the remaining variance is allocated
to the unexplained fraction; for example, the leftmost points
have patterns of 0.1 batch, 0.1 container, and 0.8 unexplained
variance. Figure 3 shows that the Dsy AP decreases as the
unexplained variance contribution decreases (from left to
right) and for the central two points, where the unexplained
variance contribution is equal, the AP is lower for a higher
contribution of between-batch variance. Similarly, to the AP
results for total variance (shown in Fig. 2), increasing the
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number of batches tested can counteract low AP due to
unfavourable variance patterns. The low AP for 0.4 batch and
0.4 container variance contributions increases to a level
higher than the 3 batch, 0.1 batch, and 0.1 container variance
contribution AP by increasing the number of batches tested

from 3 to 6. The AP of span is insensitive to variance pattern
over the range of variance contributions tested.

Lifestage Effect

Lifestage effects have been observed in measures
commonly used in in vitro OINDP bioequivalence testing
(8,15). It is important to measure products across their entire
lives to eliminate biases in test/reference ratios and product
variance estimations which can affect PBE test results.

The three lifestage regimes investigated were contained
a beginning, middle, and end stage and were captured as
systematic shifts in M and log(2) shown in Egs. 4 and 7. The
beginning, middle, and end of life regimes tested were [0%,
0%, 0%], [-5%, 0%, 5%], and [~ 10%, 0%, 10%] and will be
referred to as the 0%, 5%, and 10% lifestage effects
respectively. The 0% and 5% regimes are small and of
similar magnitude to those investigated in previous similar
studies (8,15). The 10% regime is exceptionally large and was
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Fig. 3. Average power of PBE trial simulations for different test and
reference product variance patterns. Horizontal axis labels show
batch and container effect variance fractions; unexplained variance
comprises the remainder. 3 (circles), 6 (triangles), and 9 (squares)
batches
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included to test the sensitivity of the PBE test to large
lifestage effects.

The AP of both D5y and span shown in Fig. 4 show little
change for the 0% and 5% regimes and, as for other
parameters investigated, are less significant than the impact
of increasing the number of batches tested. For D5, the 10%
regime results in a small increase in AP.

Number of Particles

The final parameter investigated in the simulation study
was the number of particles tested in each trial which is related
to the variance of the Dsy and span sampling distributions
through Egs. 5 and 6 and is distinct from the RSD and the
product variance patterns which impact M and log(2.) through
Egs. 4 and 7. The AP for D5, reduced marginally as the number
of particles increased. The asymmetric samples (which would
only result from poor experimental control or deliberate
biasing) produce the same behaviour as observed for total
variance in Fig. 2 where a low test product # and high reference
product n result in high test and low reference product variances
respectively. The opposite is true when the test product # is high
and reference product # is low. The lower plot in Fig. 5 shows
that span AP increases with increasing number of particles
sampled, decreases for when test product » is much lower than
reference product n, and is consistently close to zero (off axis
scale) for the opposite case.

1.0

08 l
g 2
: o
o
S 06 o o
©
g
<
0.4 D 5 0
\us\c Xé\o x’\@\e
N N o
o \ S
N & '\Qe\e“

Lifestage Effect (Beginning / Middle / End)

0.8

0.6

Average Power

0.4

Span

)(’\QO\0
™
S
Lifestage Effect (Beginning / Middle / End)
Fig. 4. Average power of PBE trial simulations for different test and
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Power and Assurance

The description of AP of a statistical test can develop
intuition in the design of trials; however in real cases, the
parameters discussed above are not known with certainty.
This section describes methods for incorporating prior
knowledge into in vitro bioequivalence trial design. The term
design here refers to the number of batches, containers, and
lifestages to be tested in an in vitro bioequivalence trial.

Current FDA guidance for in vitro bioequivalence
testing suggests a trial design of 3 batches, 10 containers,
and 3 lifestages per product (16). This design is expected to
sufficiently sample the variance of a typical product where the
main source of variability comes from within a batch (27).
With an increasing number of in vitro metrics being used to
show bioequivalence, it is important to explore how small
deviations from the well-established design might help or
hinder the probability of success of a trial. Such methods are
explored in this section.

To represent the process of designing a full PBE trial from a
feasibility scale trial, a small set of test and reference product
data were simulated using the model described by Egs. 3-8
where the test product mean Dsy was equal to 102% of the
reference product value (other parameter values are detailed in
the “METHODS” section). This simulated dataset is shown in
Table I and represents a pilot or feasibility scale study.

Bayesian inference was used to estimate the test and
reference product parameters used in the power calculations.
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Fig. 5. Average power of PBE trial simulations for different numbers
of particles. 3 (circles), 6 (triangles), and 9 (squares) batches
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Three different hierarchical model structures (detailed in the
“METHODS” section) were compared as shown in Table II.
The test product data was best described by a model
including batch and container effects whereas the reference
product data was best described by a model including just
only batch effects. The obtained parameter estimates for the
final models are shown in Table III.

The power of different trial designs calculated with the
model parameters shown in Table III is summarised as a
contour plot in Fig. 6 where the red point indicates the design
shown in the FDA PSG for Budesonide example calculations
(16) of 3 batches, 10 containers, and 3 lifestages, here giving a
power of 0.510. The power was then used to explore the
impact of small adjustments to the design on the probability
of success of the trial. For example, the gradient is steeper
parallel to the batches’ axis than the containers’ axis.
Incrementing the number of containers by 1 leads to a power
of 0.508 which is a negligible change. Incrementing the
number of batches by 1 leads to a more substantial increase
in power to 0.596. Increasing the number of containers per
batch to 14 (maintaining a similar number of measurements
to the 4-batch, 10-container design) resulted in a power of
0.531. Such changes in power can be balanced against the
costs of obtaining further batches or units, and those that
would change the outcome negligibly, such as increasing the
number of containers by 1, can be discounted.

The unconditional analogue of power is known as
assurance and is defined in Egs. 14-16 (notation as in
reference (28)).

Table I. Simulated Small-scale Feasibility Dataset Used for Power
and Assurance Calculations. R and T Represent Reference and Test
Products Respectively

Product/batch/container/lifestage identifier Dsy (pm)
R/1/11 2.7570
R/1/1/2 2.7342
R/1/1/3 2.7895
R/1/2/1 2.5799
R/1/212 2.9341
R/1/2/3 2.6412
R/2/311 2.6875
R/2/312 2.6981
R/2/3/3 2.2010
R/2/4/1 2.4813
R/2/4/2 2.4267
R/2/4/3 2.8144
Tnn 2.3873
T/1/1/2 2.6598
T/1/1/3 2.7659
T/1/2/11 2.8045
T/1/212 2.9116
T/1/2/3 2.9156
T/2/3/1 2.5507
T/2/312 3.0620
T/2/3/3 2.9092
T/2/4/1 2.3225
T/2/4/2 2.3766
T/2/4/3 2.6106
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Table II. Model Comparisons for Simulated Test and Reference Products. Asterisks Denote Selected Models

Model

Test product WAIC

Reference product WAIC

All effects 0.2%
Product and batch effects 44
Only product effect 2.8

-0.8
—0.7
-15

n(0) = P(R|0)

(15)

E(n(0)) = [P(R|0)P(6)do (16)

where 7 is the power, R is the trial outcome, 6 is a vector of
assumed parameter values, y is the assurance function, E is
the expected value, and P(6) is a probability density function
describing the prior knowledge of 6. In this study, the
posterior distributions summarised in Table III were used as
P(0). The calculated assurance curves are shown as a contour
plot in Fig. 7.

Upon visual inspection, Fig. 7 shows a much steeper rise
in the regions of lower containers and batches, diminishing
returns as the sampling requirement increases and a plateau
assurance of around 0.6. The design shown in the FDA PSG
for Budesonide example calculations (16) of 3 batches, 10
containers, and 3 lifestages gives an assurance of 0.403.
Incrementing the number of containers by 1 gives an
assurance of 0.419, and incrementing the number of batches
by 1 gives an assurance of 0.465. Increasing the number of
containers to 14 gives an assurance of 0.428. Inspection of the
assurance of these designs gave a similar result to that of the
power. Increasing the number of batches raised the assurance
more than increasing the number of containers, even when
the total number of measurements was held constant.

In a practical setting, the results of this and the previous
section can be utilised to set expectations and guide necessary
adjustments in trial design within reasonable limits. For
example, if the analysis of a feasibility study suggests that the
test product has a much higher variance than the reference
product, then the results of Fig. 2 show that the expected
probability of success will be diminished. More subtle is the
insight that a substantially lower residual variance component
can hinder the probability of success in trials of a highly variable
parameter such as Dsy in this study (see Fig. 3). In that case,
different study designs can be explored using the power and
assurance approaches, optimising adjustments made (if possi-
ble), and expectations of the trial outcomes can be set based on
prior knowledge of the products being tested (the feasibility
trial) and the known behaviour of the PBE approach for the
given measure.

DISCUSSION

The previous section highlighted two main effects that
impact the performance of PBE trials of inherently high
variance (Dsp in this study) and low variance (span in this
study) metrics. The first was variability in the PBE test results
due to sampling variance. For higher variability products, the
distribution of PBE test results is expected to be wider and
may result in a greater proportion of false negative outcomes.
The second factor is the width of the bioequivalence region
which is dictated by the (63—c}) and max (ck,03) terms in
the definition of the PBE test statistics (Eqgs. 1 and 2) and
shown by the lines in Fig. 1. By the definition of the test
statistic, a higher reference product variance widens the range
of test/reference mean ratios that fall under the definition of
population bioequivalence and a higher test product variance
reduces the range.

The interplay between the widening of the bioequiva-
lence region and the variability in test results was observed
across the different variance patterns shown in Fig. 3. The
overall test and reference product variances, and therefore
the width of the bioequivalence region, in these simulations
were fixed, yet the AP of D5y and span behaved differently.
The span AP did not change across the different variance
patterns suggesting that the PBE test result was dominated by
the width of the bioequivalence region and change variability
of the test result between the variance patterns was
insignificant. The Ds, AP decreased as residual variance
fraction decreased. The width of the bioequivalence region is
constant; therefore, decreasing residual variance must have
increased the variability of the test result. This could be
explained by a larger impact of outlying batch or container
effects in biasing the results of individual tests which would be
reduced if a greater fraction of the variance was residual.
Additionally it has been reported that the absence of a batch
effect in the method used to conduct the PBE test described
in the FDA PSG for Budesonide (16) can result in small
decreases in average power and increases in false equivalence
rates with increasing batch effects (8). The conclusions from
the study detailed in reference (8) were that incorporation of

Table IIL. Posterior Parameter Means and Standard Deviations
(Shown in Brackets) for Simulated Test and Reference Product data

Parameter Test product Reference product
M 1.03 (0.12) 1.01 (0.10)

Dso 0.22 (0.07) 0.20 (0.05)

oB 0.22 (0.31) 0.21 (0.28)

oc 0.14 (0.13) -
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Fig. 6. Predicted power of the PBE test from statistical models

calculated using simulated feasibility scale trials data. Power for 3

lifestages is shown. Point shows 3 batches and 10 containers

the batch effect and a larger number of tested batches are
required to improve PBE testing. The effect of testing a
larger number of batches is shown in Fig. 3 to offset the drop
in AP due to greater between-batch variability. The trial
design methods shown in “Product Variance Pattern” suggest
that many more batches than the minimum number suggested
in the FDA PSG for Budesonide (16) may be required to
achieve trials with sufficient probabilities of success. For
example, the assurance increased from 0.403 to 0.465 upon
increasing the number of batches by 1 and only increased to
0.428 upon increasing the number of containers to 14,
maintaining a similar number of total measurements as the
addition of a single batch.
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Fig. 7. Predicted assurance of the PBE test from statistical models

calculated using simulated feasibility scale trials data. Assurance for 3

lifestages is shown. Point shows 3 batches and 10 containers
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The response of AP to changes in the number of
particles tested (n) also highlighted the interplay between
the width of the bioequivalence region and variability in PBE
test results. Dsy AP reduced slightly with increasing n as the
reference product variance decreased, narrowing the bio-
equivalence region, and must therefore have not been
counteracted by a fall in PBE test result variability. The span
AP showed the opposite effect, increasing with increased n
due to a fall in the PBE test result variability that was more
significant than the narrowing of the bioequivalence region.
For the asymmetric n simulations, the span AP was close to
zero for all test/reference mean ratios examined when the test
product n was much lower than the reference product n due
to very large (c%—0%) value, penalising the result. It should
be noted that the asymmetric n calculations were merely
illustrative and well-controlled trials should always analyse
similar numbers of particles.

The results described in the initial phase of the simula-
tion study provided a general insight of the performance of
the PBE test under different circumstances. The section that
followed investigated the design of in vitro bioequivalence
trials using statistical power and assurance. Power and
assurance both require some prior information of the
products to be tested. Power is conditional on exact
quantities, which are not known at the time of calculation
and must be assumed, and assurance treats the quantities as
random variables accounting for their uncertainty. Power and
assurance were calculated based on results from a simulated
feasibility scale trial, and the results differed in two main
ways. The first difference is that assurance does not tend
towards certainty even at impractically large numbers of total
measurements. The plateau assurance reflects the probability
distribution of the product parameters (P(0) is Eq. 16), which
in this case is around 0.6 as it is not known with certainty
whether the products are truly bioequivalent. The second
difference is that the gradients of the assurance curves
diminish at smaller numbers of batches and containers than
those in the power curves which can be seen as wider gaps
between contour lines in Fig. 7 than in Fig. 6 above assurance
values of around 0.5. This is a well-documented behaviour of
assurance when compared to power in the context of clinical
trials (29) and can lead to counterintuitive results, such as
assurance values of 0.5 regardless of trial design if prior
variance is high (30). The results of assurance calculations
should therefore be communicated with care. It is notable in
this example that in the region of practical trial designs,
centred around 3 batches, 10 containers, and 3 lifestages, the
assurance is still far from the plateau region meaning that
increases in the scale of the trial will appreciably improve the
probability of success of the trial.

In a practical setting power and assurance, calculations
can be used to explore the impacts of possible changes from
the minimum trial design recommended in many FDA PSGs
(16) and can be used to decide on whether any increase in the
probability of success of the trial justifies the additional cost.
Deviations from the 3-batch, 10-container, 3-lifestage design
in both power and assurance (shown as red points in Figs. 6
and 7) show steeper gradients for increases in the number of
batches than the number of containers. The procurement of
additional batches for a trial may be impractical; therefore,
the impact of increasing the number of containers or
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lifestages can be assessed. For example, fixing the number of
batches and containers at 3 and 10 respectively and changing
the number of lifestages from 1 to 3 give an increase in
assurance from 0.348 to 0.392 to 0.403. Increasing the number
of containers from the FDA-suggested design to 14 increases
the assurance from 0.403 to 0.428 whilst increasing the total
number of measurements from 90 to 126 (where adding a 4th
batch would require a total of 120 measurements). It would
therefore be up to those designing the trial to use prior
knowledge of the products alongside calculations of power
and assurance to determine whether the minimum trial design
suggested by the FDA results in a sufficient probability of
success and what possible cost- and resource-efficient adjust-
ments can be made to maximise the chance of correctly
determining bioequivalence.

The results of the trial design simulations are consistent
with the simulations of different overall variance and variance
patterns shown in Figs. 2 and 3 where increasing total variance
and increasing fractional batch effect reduced the AP. Both
figures show that low AP resulting from the inherent variance in
the trialled products and metrics can be counteracted by
increasing the number of total measurements.

One variable that was not explored in the trial design section
of this work was the effect of the number of sampled particles which
is unique to image-based particle size measurements. The simula-
tions at different sample sizes shown in Fig. 5 suggest that the effect
of the number of particles on high variance parameters is negligible,
provided that it is balanced between test and reference products,
and is an avenue for further study of bioequivalence tests using
related measurements.

CONCLUSIONS

This study has shown the use of statistical simulations to
investigate the performance and design of in vitro population
bioequivalence trials of two metrics commonly used to
summarise particle size distributions from image-based
methods such as morphologically directed Raman spectros-
copy. The average power of the population bioequivalence
test for the higher variability Ds, was sensitive to the total
variance, variance pattern, and lifestage effect but not the
number of particles tested. The average power of test for the
lower variability span was sensitive to the total variance, and
the total number of particles tested but not the variance
pattern or lifestage effects. These differences were due to the
interaction between variation in PBE test results and the
width of the bioequivalence region determined by the test
and reference product variances. This finding may generalise
to other metrics tested using the PBE approach as more
in vitro techniques are used as evidence for bioequivalence of
complex drug products.

A trial design method was also investigated where the
statistical power (which is conditional on unknown product
characteristics) and assurance (which can be thought of as the
unconditional expected power) were estimated from simu-
lated feasibility scale data. The results of both the power and
assurance calculations were well explained by the PBE test
performance investigations. Calculations of power and assur-
ance were used to show how prior knowledge of test and
reference products could be used to assess the probability of
success upon practical changes from a commonly used trial
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design. Increasing the number of batches gave the most
efficient gain; however, increasing the number of containers
or lifestages also improved the probability of success. It would
therefore be up to those designing a trial to assess the costs
and benefits associated with changing the design. Using this
more informed approach would prevent arbitrary increases in
testing burden which do not sufficiently improve the proba-
bility of success and the execution of trials with unacceptably
low probabilities of success.

In the future, it is hoped that further real-world data will
be generated for an increasing number of in vitro metrics (like
D5 and span) that can provide more informed simulations,
similar to those conducted for impactor stage mass and
emitted dose (8,15), and that additional experimental vari-
ables such as number of particles tested will be further
understood. Ultimately work in this area should provide
further tools for the generics industry to bring more complex
locally acting drug products to the market.
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