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Abstract
Although nasal inhalation products are becoming more and more important for the delivery of medicines, characterization 
of these products for quality control and assessment of bioequivalence is complicated. Most of the problems encountered 
are associated with the assessment of aerodynamic droplet/particle size distribution (APSD). The droplets produced by 
the various nasal devices are large, and for suspension products, individual droplets may contain multiple drug particles or 
none at all. Assessment of suspension products is further complicated by the presence of solid excipient particles. These 
complications make it imperative that the limitations of the instruments used for characterization as well as the underlying 
assumptions that govern the interpretation of data produced by these instruments are understood. In this paper, we describe 
various methodologies used to assess APSD for nasal inhalation products and discuss proper use, limitations, and new 
methodologies on the horizon.

Keywords  cascade impaction · laser diffraction · morphologically-directed raman spectroscopy · nasal inhalers · optical 
imaging · particle/droplet image analysis · particle image velocimetry · phase-doppler anemometry · regulation

Introduction

Inhaled medication delivery by the nasal route has been 
available to patients as a therapeutic modality for many 
years. However, there is increasing interest in this route 
of administration for a number of reasons, in particular for 
access to the brain via the olfactory bulb [1] and topical 
vaccine delivery to receptors in the nasal epithelium [2]. 

Hitherto, in the United States Pharmacopeia, the meth-
odologies for assuring nasal product quality have been 
grouped with those for oral inhaled products [3, 4]. An 
argument can be made, however, for treating the assess-
ment of size distribution from nasal products separately, 
as is done in the European Pharmacopoeia [5], given that 
the typical size range of the bulk of the droplets from nasal 
spray pumps is between 20 to around 200 µm, more than 
an order of magnitude larger than droplets from devices 
intended for oral delivery to the lungs since the nasal cav-
ity is directly accessible by the spray [6]. These large drop-
lets cannot be effectively size segregated by multi-stage 
inertial impaction, the mainstay method for assessing the 
aerodynamic particle size distribution of orally inhaled 
products. Alternative size-measurement methods are there-
fore necessary. However, the tail of the fine droplet com-
ponent of the overall droplet size distribution from nasal 
sprays can potentially extend to sizes that could penetrate 
beyond the nasopharynx and reach the lungs. Such small 
droplets have been quantified separately from the bulk of 
the nasal spray using inertia-based methods that presently 
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are not included in the pharmacopeial compendia. The 
purpose of this review is to raise awareness of how the 
drug product profile associated with entire size distribu-
tion from aqueous nasal products can be quantified. In 
view of the importance of this aspect in terms of defin-
ing the likely dose of medication delivered to the nasal 
space, other aspects of nasal product assessment, including 
delivered dose uniformity and spray geometry/pattern, are 
intentionally beyond scope, while recognizing the desir-
ability of exploring the other important metrics in future 
similar review articles.

Droplet/particle size analysis of aqueous nasal sprays has 
long been a component of product development and rou-
tine quality control tests [7]. For suspension formulations, 
measurement is complicated because particles of the active 
pharmaceutical ingredient (API) are contained within these 
droplets, and it is possible that a given droplet may either 
not contain an API particle, or more than one particle as has 
been noted for suspension pressurized metered dose inhalers 
(pMDIs) [8]. Characterization of such products is further 
complicated by the presence of excipient particles [9]. As 
there are multiple techniques available for measuring drop-
let and particle size in aerosols, it is essential to be aware 
of both the underlying instrument method parameters and 
limitations when applying these measurements to nasal drug 
products.

Droplet and particle size measurements have also evolved 
as one of the indicators of in vitro bioequivalence (BE) [9]. 
For this reason, these techniques are the cornerstone of many 
regulatory BE guidances. Although laser diffraction (LD) 
is suggested as a method of choice for the determination 
of droplet size [9], in order to develop more discriminatory 
methods to support BE, particle size measurement method-
ology has evolved to include novel techniques, in particular, 
Morphology Directed Raman spectroscopy (MDRS) as well 

as other advanced laser-based techniques including Phase-
Doppler Particle Analysis (PDPA) [10, 11].

At present, there is a lack of consistent technical guid-
ance for the size assessment of droplets and API particles 
in nasal sprays; so, the purpose of this article is to highlight 
regulatory applications where such analyses are required. It 
is also necessary to present background material on these 
techniques in order to highlight their merits and limitations, 
as well as to identify developing analytical applications.

Regulation

USA

In the most recent guidance covering bioavailability (BA) 
and bioequivalence (BE) for nasal products [9], US FDA 
requests droplet size distribution obtained via LD (or appro-
priately validated alternative methodology) during the fully 
developed phase of the spray (Fig. 1). These measurements 
are to be performed at the beginning and end of unit life-
time and at two distances from the actuator orifice [7, 9]. 
A statistical evaluation (population bioequivalence, PBE) 
[12] is also required for the volume (mass)-weighted median 
diameter (D50) and span, defined as (D90 – D10)/D50, where 
D90 and D10 are the sizes corresponding to the 90th and 10th 
volume (mass) percentiles of the distribution. Importantly, 
the corresponding guideline from the European Medicines 
Agency (EMA) does not specify the time-portion of the 
plume to be analyzed [13].

The 2002 FDA nasal CMC guidance [7] indicates that 
droplet size by LD is an expected release and stability test. 
This guidance added the requirement to report the mass 
percentage of particles/droplets <10 µm diameter. Such 
small particles have the potential to penetrate beyond the 

Fig. 1   Example laser diffraction output showing Transmission vs 
Time (y-axis) and Particle Diameter vs Time (z-axis). As the spray 
begins to form, Transmission levels decrease. As the Transmission 

level plateaus, the spray enters the fully developed or stable phase. 
(NextBreath, an Aptar pharma company, Baltimore, MD, used with 
permission)
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nasopharyngeal region to reach the lungs where the API may 
not have an indication for use. In addition, delivering locally-
acting API to the lungs can result in systemic absorption and 
potential adverse effects. It is important to note that one of 
the primary purposes of locally acting nasal products is to 
prevent systemic adverse effects, such as growth suppression 
in children caused by systemic absorption of corticosteroids.

Quantification of the drug mass contained in small parti-
cles or particle/droplet size distribution by cascade impac-
tion (CI) is also requested for BE. However, such data need 
only be reported for the beginning life-stage. For nasal 
sprays, current CI methodology utilizes a 2-L or larger 
expansion chamber (Induction Port). The total API mass 
collected below the top stage of the CI should be reported 
in order to account for small particles that may be delivered 
to regions of the airway beyond the nose. The mass balance 
should also be reported as a percentage of label claim (LC). 
It is notable that neither the United States nor European 
Pharmacopeial compendia specify a method for quantify-
ing the mass percentage of small particles from an aqueous 
nasal product.

Light (optical) microscopy is suggested as a suitable tech-
nique for estimating drug particle size distribution (PSD) 
in suspension products, including API-excipient aggre-
gates. This determination should be carried out on samples 
taken directly from the bottle. PSD is still performed for 
CMC programs; however, in 2015, PSD by microscopy was 
removed from FDA-regulated nasal spray bioequivalence 
programs [14]. In addition, it should be noted that neither 
LD nor light microscopy directly provide aerodynamic PSD 
(APSD). Because light microscopy does not provide chemi-
cal identification of the size-characterized particles and since 
some nasal suspension products contain insoluble excipient 
particles as well as API-excipient agglomerates, it is recom-
mended that “studies of nasal sprays include placebo product 
to provide an estimate of the occurrence of apparent drug 
particles (false positives)” [15].

In March 2015, the FDA Office of Generic Drugs began 
issuing Product Specific Guidance (PSG) documents for 
nasal products (Table I). These PSGs are updated periodi-
cally by FDA’s Office of Generic Drugs and major changes 
that apply globally to all similar products are typically ref-
erenced to the first product where mentioned (https://​www.​
acces​sdata.​fda.​gov/​scrip​ts/​cder/​psg/​index.​cfm). For exam-
ple, all nasal spray PSGs issued in or after September 2015 
reference the first PSG for fluticasone propionate metered 
nasal spray [16]. The fluticasone propionate metered nasal 
spray PSG was last updated in 2023 [17].

The FDA has long recognized that, for nasal suspen-
sions, “when the currently available technology cannot be 
acceptably validated” alternative methodology may be con-
sidered [7]. Specifically, with the product specific guidance 
(PSG) recommendation Draft Guidance on Triamcinolone 

Acetonide, metered nasal spray (October 2016) [11], the 
Office of Generic Drugs introduced the recently developed 
combination technique of MDRS [18, 19] as an alternative 
approach to the comparative clinical endpoint BE study. 
Although this newly commercialized technique also does not 
provide aerodynamic data, it affords chemical identification 
of the imaged particles such that API can be distinguished 
from excipient and agglomerates. Notably, all subsequent 
PSG recommendations or revisions also suggest this alterna-
tive approach. However, although this methodology provides 
chemical identification of aerosolized particles, the fixed 
resolution limit for optical microscopy (about 0.5 µm) ren-
ders it less than ideal for sizing submicron particles although 
this is not seen as a real problem for the characterization of 
nasal aerosols.

The current in vitro droplet size expectations from the 
FDA are presented in Table II.

EU, Canada, Australia, Brazil, and China

Nasal spray droplet size regulatory requirements for applica-
tions to the EMA [13], Health Canada [20], and Brazil [21] 
are mostly similar to those from the FDA. From a bioequiva-
lence standpoint, only the FDA and ANVISA have issued 
official BE guidelines. However, the EMA Guideline on the 
Pharmaceutical Quality of Inhalation and Nasal Products 
notes that comparative data using a validated droplet method 
should be provided [13]. With respect to inhalation and nasal 
products, Australia has adopted the EMA guidelines [22]. 
At the time of this publication, China has also proposed 
draft bioequivalence guidelines. Table II highlights in vitro 
droplet size expectations from the major regulatory agencies.

Methodology

Cascade Impaction

Although CI is the recommended methodology for deter-
mination of the APSD for pharmaceutical aerosols from 
orally inhaled products [4, 21, 23, 24], this approach is 
less than ideal for such use with nasal sprays. This is so 
because most droplets/particles emitted by nasal spray 
devices are larger than the cut-off diameter (size at which 
50% of incoming particles are collected) for the uppermost 
stage of the most used cascade impactors (i.e., about 9 
µm aerodynamic diameter for the 8-stage Andersen Cas-
cade Impactor (ACI) sampling at 28.3 Lpm). However, 
it is also important to assess the amount of excipients 
contained in small droplets (using API as a surrogate) as 
some of those compounds are not approved for pulmonary 
use and to assure that the amount is no greater for the 
test product than for the precursor product [9]. For these 

https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm
https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm
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purposes, CI-based particle size analysis can be of benefit. 
A description of CI methodology that can be used as the 
basis for evaluating aqueous nasal products can be found 
in normative USP <601>. However, this chapter does not 
provide information concerning how to present the spray 
to the measurement apparatus, simply stating “In all cases 
and for all tests, prepare and test the spray as directed 
in the labeling and the instructions for use.” Informative 

USP <1603> provides useful background information by 
comprehensively covering good cascade impactor prac-
tices [25].

Some attempts have been made to circumvent this limi-
tation by using modified ACIs designed for use at higher 
than standard flow rate (i.e., 60 or 90 L/min) but operated 
at 28.3 L/min to extend the functional size range to larger 
droplet sizes. For example, Doub and Adams looked at four 

Table I   Nasal Product Specific Guidelines (Current Version Indicated)

Drug(s) Dosage form Revision code Date of most 
recent ver-
sion

Azelastine hydrochloride and Fluticasone propionate Metered nasal spray R4 May-2023
Azelastine Hydrochloride, 0.137 mg Metered nasal spray R1 Aug.-2022
Azelastine Hydrochloride, 0.2055 mg, OTC Metered nasal spray – OTC N Aug.-2022
Beclomethasone dipropionate monohydrate, 0.042 mg Metered nasal spray R1 Aug.-2023
Budesonide, 0.032 mg Metered nasal spray R2 Aug.-2023
Calcitonin-salmon Metered nasal spray R1 Mar.-2020
Ciclesonide Metered nasal aerosol N Sep-2012
Ciclesonide Metered nasal spray R1 Aug.-2023
Cyanocobalamin Nasal spray N Jul.-2017
Diazepam Nasal spray N Nov.-2020
Dihydroergotamine mesylate, 0.5 mg Metered nasal spray R1 June-2020
Dihydroergotamine mesylate, 0.725 mg Metered nasal spray N Feb.-2023
Esketamine HCL Nasal spray N Aug.-2020
Fentanyl Citrate Nasal spray N April-2014
Flunisolide Metered nasal spray N May-2022
Fluticasone furoate Metered nasal spray R2 May-2023
Fluticasone propionate – OTC Metered nasal spray – OTC R1 May-2021
Fluticasone propionate 0.05 mg Metered nasal spray R3 May-2023
Ipratropium bromide Metered nasal spray N Aug.-2021
Ketorolac tromethamine Metered nasal spray R2 Aug.-2020
Ketorolac tromethamine Nasal spray R1 Feb.-2018
Metoclopramide HCl Metered nasal spray N May-2021
Midazolam Nasal spray N May-2021
Mometasone furoate (0.05 mg) Metered nasal spray R3 May-2023
Mometasone furoate monohydrate Metered nasal spray R1 Feb.-2019
Mometasone furoate OTC Metered nasal spray N Nov.-2022
Mometasone furoate; Olopatadine HCL, 0.025 mg, 0.665 mg Metered nasal spray R1 Aug.-2023
Naloxone HCl (2 mg, 4 mg) Nasal spray N April-2017
Naloxone HCl (8 mg) Nasal spray N May-2022
Nicotine, 0.5 mg Metered nasal spray R1 Aug.-2022
Olopatadine HCl, 0.665 mg Metered nasal spray R1 Aug.-2022
Oxymetazoline HCl; tetracaine HCl, 0.1 mg; 6 mg Metered nasal spray R1 Aug.-2022
Sumatriptan Nasal spray R2 Nov.-2018
Tetracaine HCl; oxymetazoline HCl Nasal spray N May-2017
Triamcinolone acetonide OTC Metered nasal spray N Oct.-2016
Triamcinolone acetonide, 0.055 mg Metered nasal spray R3 Aug.-2023
Varenicline tartrate (0.03 mg) Nasal spray N Nov.-2022
Zolmitriptan Nasal spray R1 Nov.-2018
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different configurations of the ACI each with three different 
induction ports (inverted round glass flasks) and evaluated 
manual vs automated actuation [26, 27]. Use of a 1-L flask 
was shown to provide an inadequate path length for good 
development of the aerosol spray. Using either a 2-L or 5-L 
flask with automated actuation yielded more than 2½-times 
better precision relative to manual actuation [27]. Figure 2 
shows the use of a 2-L glass flask with a SprayVIEW® NSX 
automatic actuator (Proveris Scientific, Hudson, MA). These 
authors, balancing measurement of total and small particle 
mass (SPM) deposition vs reproducibility, recommended the 
use of the 8-stage ACI at 28.3 lpm with a 2-L inlet as the 
optimal configuration. Garmise and Hickey took a similar 
approach with a modified version of the ACI (stages −2, 
−1, −0, filter) operated at 15 Lpm and calibrated this instru-
ment using monodisperse particles in the 9–22 µm range to 
improve size-resolution of the emitted particles greater than 
10 µm aerodynamic diameter [28].

The FDA recommends using automated actuation 
systems for BE assessments to decrease variability in 
drug delivery thus increasing the ability to differentiate 
between test and reference products [9]. This enhanced 
differentiation has been observed in several studies [29, 
30]. However, the Guidance also recommends that actu-
ation settings should be relevant to proper usage by the 
target patient population. Typically, the manufacturers 
of automated actuation devices can assist users to estab-
lish appropriate parameters [31]. For example, Spivey 
et al. found that by optimizing a set of eight parameters 
using an automated actuation device they could obtain 
D50 values within the expected 85 to 115% range of the 
average manual values [32]. Additional factors affect-
ing droplet size are appropriate shaking and priming 
of nasal products prior to actuation. This precaution is 
especially important for thixotropic formulations which 
are able to change their physical properties under agita-
tion, and thus optimize exposure of the product to the 
nasal mucosa [33].

A recent stimulus article published by the USP 
Expert Panel for Inhalation and Nasal Drug Products 
notes that the use of in vivo-predictive inlet ports in 
combination with simulated breathing patterns, rather 
than sampling the spray at one or more fixed flow rates, 
may be more predictive of delivery and deposition [34]. 
The authors of this article further recognized that there 
is no consensus on the most appropriate in vivo-predic-
tive inlet port for development or routine testing. Exam-
ples of realistic or anatomical models are described as 
follows.

Table II   Regulatory Droplet Size Requirements for Aqueous Nasal 
Sprays (Solutions and Suspensions)

Droplet size by laser  
diffraction

Drug in small particles by 
cascade impaction

Study Release and 
stability

Bioequivalence Release and 
stability

Bioequivalence

FDA X X N/A X
EMA X X N/A N/A
Brazil X X N/A X
Canada X X N/A N/A

Fig. 2   Abbreviated ACI fitted 
with 2-L round glass expansion 
chamber and SprayVIEW® 
NSX actuator (Proveris Scien-
tific Corporation, Hudson, MA, 
USA)
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In vivo‑Predictive Inlet Ports

Glass inlet ports for nasal products can be as simple as 
inverted round flasks [27]. However, the use of more ana-
tomically relevant devices such as models based on casts 
prepared at autopsy [35] have allowed more detailed iden-
tification of deposition sites such as separate determination 
of API within the anterior or posterior cavities of the nose. 
Williams et al. through the work of the European Pharma-
ceutical Aerosol Group (EPAG) have more recently reported 
collaborative studies looking at other simple inlets (both 
glass and metal) aimed specifically at evaluating those nasal 
spray components that have the potential to reach the lungs 
[36, 37]. Typically, regardless of material of construction, 
these inlets superficially resemble the USP induction port 
in design, but with an angle of 25° between the two sections 
allowing the nasal spray to be actuated in a more natural 
(i.e., per patient use) manner as opposed to horizontal actua-
tion as is required when using the USP throat or other right-
angle induction ports (Fig. 3). Ideally, the angle should be 
within the range specified in the patient use brochure. Initial 
findings testing an aqueous nasal spray were encouraging 
in terms of being able to detect azelastine, as model API, 
contained in small droplets [34]. However, further testing 
of the new inlet indicated [38] that more work needed to be 
done to mitigate drip-back out of the inlet to enable more 
reproducible determinations of the low-level emissions from 
currently marketed nasal spray products. In addition, EPAG 
are evaluating these inlet ports, using the Fast Screening 
Impactor (FSI) as an alternative to a full resolution impac-
tor (Fig. 4). A new nasal inlet has recently been introduced 
by Baltz and Scherließ [39] (Fig. 5). This inlet, referred to 

as the Kiel Nasal Inlet (KNI), slips onto the end of the USP 
throat. The inlet is covered with a lid that has air inlet holes 

Fig. 3   EPAG-designed stainless 
steel Induction port attached to 
a Next Generation Impactor via 
a preseparator (both Copley Sci-
entific Ltd., Nottingham, UK)

Fig. 4   EPAG nasal induction port attached to FSI (from Regina 
Scherließ presentation to EPAG Nasal Sub-team, 7/21/2021 – used 
with permission)
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in line with the axis of the throat allowing for the constant 
airflow required for the target cascade impactor. The nozzle 
of the nasal spray is inserted through an elastic seal at the 
bottom of the inlet. The seal allows for insertion at any angle 
between vertical and 60°. An assessment of a sodium cromo-
glycate nasal inhaler looked promising as it resulted in a sub 
10 µm fraction which was comparable across analysis using 
a FSI with a 10 micron cut-off plate, an NGI, and a reduced 
NGI. Additional KNIs have been sent to other laboratories 
for further testing and acquisition of performance data. The 
KNI was designed specifically for testing nasal sprays and 

additional evaluation will be required if it is to be applied 
for testing other dosage forms such as nasal aerosols or nasal 
powders.

An idealized nasal inlet, the Alberta Idealized Nasal Inlet 
(AINI), has been developed to mimic in vivo deposition by 
the group led by Finlay (Fig. 6) [40]. The AINI consists of 
four anatomical regions: vestibule, turbinates, olfactory, and 
nasopharynx. Chen et al. recently evaluated a commercially 
available nasal spray solution, suspension, and HFA-based 
nasal aerosol, comparing in vitro deposition with the AINI, 
over a range of actuation angles, to in vivo deposition by 
gamma scintigraphy [40, 41]. Their outcomes indicated that 
the AINI represented well the average in vivo deposition 
across this range of drug products (see Table III). The AINI 
predictions for deposition of solutions and suspensions were 
statistically comparable (Welch’s t-test, α = 0.05) to the pre-
viously obtained in vivo results. Predictive results for the 
nasal pMDI, particularly for the anterior region, were found 
to be especially poor but, because this device had a form 
factor much different from that of a traditional nasal spray, 
the appropriate range of angles is uncertain.

Recent CFD results from an FDA-commissioned study 
by Walenga et al. [42] seem to confirm this advantage., Xi 
et al. [43], via studies also funded by FDA, showed that 
anatomically accurate nasal casts along with digital simula-
tion can be used to visualize regional deposition. However, 
another FDA funded project authored by Manniello et al. 

Fig. 5   Schematic for Kiel Nasal 
Inlet (Fig. 1 from reference 40 – 
used with permission)

Fig. 6   Alberta idealized nasal inlet attached to a next generation 
impactor (Copley Scientific Ltd., Nottingham, UK)

Table III   Comparison of In  vitro Deposition (AINI) with In vivo Gamma Scintigraphy (Data from Chen et al. [40]) (Units Are Fraction of 
Deposited Dose ± Standard Deviation

Solution product Suspension product Nasal pMDI

“Nasal” location In vivo AINI, 45° AINI, 60° In vivo AINI, 45° AINI, 60° In vivo AINI, 45° AINI, 60°

Anterior 0.56±0.23 0.45±0.16 0.69±0.08 0.68±0.23 0.66±0.1 0.73±0.26 0.80±0.16 0.90±0.08 0.99±0
Posterior 0.44±0.2 0.54±0.15 0.31±0.07 0.31±0.2 0.34±0.1 0.26±0.26 0.18±0.17 0.09±0.08 0.00
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[44] showed that there is high inter-subject variability in 
posterior deposition (i.e., deposition in site of action), which 
was mainly due to the interaction of the device with the nose 
(i.e., the angle of insertion and the plume angle). This study 
involved 40 distinct anatomically accurate nasal casts with 
device specific instructions for patient use and sinusoidal 
breathing patterns. This high variability in posterior deposi-
tion is also reflected in similar studies by Alfaini et al. [45]. 
The large effect of plume angle on posterior deposition was 
shown earlier by Kolanjiyil et al. [46].

Currently, the use of anatomical nasal cavity-based mod-
els is expanding for the characterization of nasal drug prod-
ucts. Some commercial sources of relevant anatomical nasal 
models are those provided by the RDD Online organization 
(https://​www.​rddon​line.​com/​rdd/​rdd.​php?​sid=​106”), and 
Copley Scientific Ltd. (https://​www.​cople​yscie​ntific.​com/​
en/​inhal​er-​testi​ng/), although recent advances in 3D printing 
have enabled various research groups to create such models 
based on CT scans, while other groups have generated casts 
from cadavers, or other sources of anatomical data [47–50]. 
Williams and Suman have recently reviewed the use of such 
models for nasal drug development and the enhancement 
of understanding nasal drug delivery [47]. They made the 
important caution that to be considered valuable in the real-
world sense, these in vitro methods need to be validated 
against in vivo results.

Optical/Imaging Techniques

By far, the most common technology for assessing particle/
droplet size in nasal spray plumes is laser diffraction (LD), 
which the FDA has recommended for over 20 years [15]. LD 
is based on the angular scattering of coherent light which 
passes through the medium containing the particles or drop-
lets of interest. LD is an ensemble technique, in that the size 
analysis takes place simultaneously with all the particles or 
droplets in the light pathway, in contrast to single particle 
light scattering methods (optical particle counters). The scat-
tering angle is inversely proportional to the diameter of the 
particle and a mathematical model (Lorenz-Mie or Fraun-
hofer) is applied to interpret the angular light scattering sig-
nal to produce the size distribution that is weighted in terms 
of volume. It should be noted that exact solutions to the 
Lorenz-Mie theory, that incorporates the effect of refractive 
index of the particles/droplets on the light scattering profile, 
assumes particle sphericity. Sangolkar et al. pointed out the 
disadvantage that the refractive indices for both the particles 
and the media need to be known and that there must be a 
difference between them [51] and Luo et al. showed that the 
refractive index has a greater effect than does the assump-
tion of sphericity [52]. Several thousand measurements per 
second are possible with current LD instruments such as 
the Spraytec (Malvern Panalytical, Malvern, UK) [53]. A 

major advantage of LD compared with other optical meth-
ods is that tens of thousands of particles can be measured. 
However, if the particle concentration is too high, secondary 
scattering can occur and must be avoided because the link 
between light scattering angle and particle size is lost. Sijs 
et al. found that in addition to being affected by the fitting 
model selected (due to droplet deviation from the expected 
shape), LD tends to overestimate the number of small drop-
lets because the technique yields a continuously measured 
spatial distribution such that “small droplets traveling at a 
slow speed will appear at a higher concentration in the sam-
ple volume” [54]. Making the assumption that the measured 
particles are spherical becomes especially problematic when 
the aerosol contains small agglomerates and aggregates [55]. 
LD provides rapid analysis, especially compared to impac-
tion methods, and does not require calibration as the light 
scattering-particle size relationship is absolute. Neverthe-
less, it requires rigorous method development and validation 
to ensure the resultant distribution is representative of the 
product.

A good example of the application of LD to size-charac-
terize nasal sprays can be found in Kippax et al. [30]. Nota-
bly, Suman et al. showed that in vitro tests, such as LD-based 
droplet size measurement, are more sensitive to differences 
in performance between nasal spray pumps when compared 
to in vivo deposition in the human nasal cavity [56].

Major manufacturers of LD instrumentation are Malvern 
Panalytical and Sympatec GmbH (Clausthal-Zellerfeld, 
Germany). Bettersize Instruments Ltd. (Dandong, Liaon-
ing, China) has recently introduced an instrument (model 
S3 plus: https://​www.​bette​rsize​instr​uments.​com/​produ​cts/​
bette​rsizer-​s3-​plus/) that can perform simultaneous LD and 
particle/droplet image analysis (PDIA) measurements, but 
more details are needed on its performance compared with 
existing methods. The basic LD principles applied to nasal 
products can be found in USP Chapter <429>, but a more 
comprehensive explanation of the technique, including its 
limitations, is given in ISO 13320: 2020.

Additional efforts to circumvent limitations of using cas-
cade impaction to characterize nasal spray drug products 
with respect to droplet/particle size and plume velocity have 
utilized various optical techniques other than LD. In a recent 
series of papers, Inthavong’s research group used data from 
PDIA and particle image velocimetry (PIV) measurements 
for nasal spray delivery device optimization [57–59]. In an 
earlier study, this group used PIV combined with computa-
tional fluid dynamics (CFD) to optimize nasal spray delivery 
[60]. An important result from Inthavong’s 2014 study with 
commercial nasal sprays is that, unless the inhalation is quite 
extreme, a user’s breathing profile is insufficient to have an 
influence on the measured droplet size distribution [57]. In 
a PDIA system, a high-power laser, used to illuminate the 
spray plume, is synchronized with a high-resolution CCD 

https://www.rddonline.com/rdd/rdd.php?sid=106
https://www.copleyscientific.com/en/inhaler-testing/
https://www.copleyscientific.com/en/inhaler-testing/
https://www.bettersizeinstruments.com/products/bettersizer-s3-plus/
https://www.bettersizeinstruments.com/products/bettersizer-s3-plus/
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camera equipped with a long focal length microscope lens 
to obtain images of droplets and particles. Because the field 
of view (FOV) is small (approximately 3 mm × 4 mm), as 
many as 90 images (actuations) are required to image an 
entire plume out to 3 cm from the actuator. It is therefore 
reasonable to surmise that as many as 100 images may need 
to be collected for each FOV at each time point of plume 
life [58] in order to obtain an adequate statistical average.

Paired images (separated by as little as 100 ns) are 
recorded and later analyzed for PIV measurements, which 
typically make use of the same optical system as used for 
PDIA, to obtain an accurate velocity distribution. Renewed 
interest in PIV may be forthcoming as FDA has recently 
suggested use of this methodology to assess spray velocity 
for soft mist inhalers (SMIs, referred to as metered sprays for 
inhalation using FDA terminology) [61–64]. Despite the fact 
that plume velocity significantly impacts the efficacy and 
safety of nasal sprays by influencing the spray dispersion in 
the nasal cavity [7, 65–67], plume velocity characterization 
is not (yet) a requirement for nasal sprays. One drawback of 
PIV, similar to LD, is that the presence of excessively high 
concentrations of API particles in the measurement zone can 
compromise the accuracy, and result in invalid data [68]. 
Similar measurements can be made using plume geometry 
instrumentation [69].

Commercial sources for PDIA and PIV instruments are 
TSI Inc. (Shoreview, Minnesota, USA), Malvern Panalytical 
(Malvern, UK), and Oxford Lasers (Didcot, UK).

Phase- or (laser)-Doppler Anemometry (PDA or LDA) 
is another purely optical technique and can simultaneously 
provide both particle/droplet size and velocity measurements. 
PDA examines the scattered light from the probe volume 
formed by the intersection of two laser beams. Velocity is 
determined from intensity modulations within the probe vol-
ume and comparing the phase shift between the two beams. 
Analysis of the interference patterns in the scattered light 
created by these intersecting laser beams provides droplet 
size. The measured volume is extremely small (1.29 × 10−3 
mm3) and the acceptance criteria have to be strict to ensure a 
valid light intensity profile at each detector, Therefore, map-
ping more than a few selected regions of the plume requires 
a very large number of measurements. As an example, Liu 
et al. showed that PDA could be used as a discriminating 
parameter for in vitro testing of nasal sprays [70] and later 
used this methodology to study the effect of actuation and 
formulation parameters on nasal spray velocity [66]. Hos-
seini et al. used PDA to characterize nasal sprays and study 
differences in dose and deposition patterns between adult and 
pediatric nasal airway models [71]. While regional deposition 
patterns were not statistically different between the pediatric 
and adult models, there were statistically different deposi-
tion amounts. Sijs et al. found that, for best results using 
PDA, “droplets need to be homogeneous, transparent, and 

spherical.” Non-spherical droplets tend to be slightly under-
sized by PDA which also sees air bubbles within droplets as 
small droplets [54]. The particle trajectory criteria for a suc-
cessful transition across the interference fringes set up by the 
intersecting light pathways are severe and may be a limiting 
factor for this technique as it can be difficult to assure that the 
sampled particles/droplets are representative [72].

Among the commercial manufacturers of PDA instru-
mentation are Dantec (Skovlunde, Denmark) and TSI.

Chemically Distinctive Imaging

A major disadvantage of the optical/imaging methodologies 
discussed above is that, although particle/droplet size can be 
measured with varying degrees of precision and accuracy, 
there is no mechanism to provide the identity of those par-
ticles suspended within the sprayed droplets. Nasal spray 
suspension products contain solid excipients in addition to 
the API, so some means is essential to be able to differenti-
ate and quantify API separately from excipient(s) and from 
API-excipient aggregates. One way to accomplish this goal 
is to use a spectroscopic technique to provide the chemical 
identity of each particle. An early attempt to address this 
problem involved wide-field Raman micro-spectroscopy 
(Raman chemical imaging, RCI). For RCI, a relatively low 
power laser light source is used to illuminate the sample and 
the scattered light is magnified onto a two-dimensional CCD 
detector. Typically, liquid-crystal tunable filters are used 
for wavelength selection. Optical (i.e., white light) images 
are also acquired which are fused with the Raman images, 
enabling differentiation between drug aggregates and indi-
vidual particles. A proof-of-concept study conducted using 
in-house prepared beclomethasone dipropionate nasal sprays 
showed promise that RCI could provide PSD information 
for drug and drug aggregates [73]. The wide-field chemi-
cal imaging approach used in this study exhibits inherently 
higher spatial and spectral resolution than do other RCI tech-
niques such as point mapping and line scanning. However, 
this methodology has not yet been widely adopted, likely 
because the instrumentation requires extensive operator 
training linking image and Raman spectra interpretation to 
make meaningful measurements.

A somewhat different version of Raman micro-spectros-
copy has emerged in recent years and has gained sufficient 
favor within the FDA [18] that, going forward, it will pos-
sibly become the method of choice for particle sizing. Note 
that LD will remain as a routine quality control test. This 
methodology, called Morphologically-Directed Raman 
Spectroscopy (MDRS), first appeared in an FDA PSG for 
triamcinolone acetonide metered nasal spray (OTC), issued 
in October 2016 [11]. MDRS combines automated imag-
ing and Raman spectroscopy, where the individual particles 
are first identified using an integrated microscope, and then 
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Raman spectra are collected for each particle. The corre-
lations between the spectral information and the morpho-
logical data collected for individual particles provide insight 
into particle morphological characteristics (size and shape) 
and chemical properties. Morphological characteristics and 
the upper and lower limits associated with those parameters 
need to be optimized for best differentiation between API 
and excipients.

Microscopic images (white light) of all particles in mul-
tiple FOVs are obtained for the target formulation dispersed 
on a quartz or metalized microscope slide using a computer-
controlled stage for the first stage of a measurement by 
MDRS. Sample preparation is somewhat complicated by the 
joint requirements that the dispersed formulation needs to 
remain in a liquid state, but the particles must remain immo-
bile. Image analysis algorithms are then applied to all images 
to define a subset of particles based on specific shape and 
size parameters. For example, particles might be selected 
that have a specific circularity and/or convexity within a 
certain size range. These parameters are chosen to select for 
the desired particle type, typically the API. Raman spec-
troscopy is then applied to the defined subset of particles. 
Typically, a full range spectrum is obtained for each parti-
cle. Because Raman signals are quite weak, this process can 
require as much as 20–30 s per particle such that acquisition 
of spectra for several thousand particles typically requires an 
over-night measurement. However, optimization of the many 
parameters (Table IV), will require numerous experiments 
encompassing several days. The optimized parameters will 
be very much product specific and, if cohesive aggregates 
are to be considered, much longer times will be required for 
optimization and validation. Spectral results are processed 
using accepted spectroscopic methods and then matched 
against library spectra obtained using pure substances in a 
dry state. While there is currently no specific FDA guid-
ance on MDRS, scientists from this regulatory body have 

published multiple papers on analytical method development 
and other considerations for this technique [10, 19].

Summary

LD and impaction-based methodologies have a long history 
of use in pharmaceutical aerosol and nasal product devel-
opment, as both these techniques are required for routine 
quality control testing. As regulatory bodies and industry 
look to establish a link between these in vitro tests and in 
vivo outcomes, new approaches such as MDRS have been 
adopted.

Debate over utilization and standardization of new tech-
nology and biorelevant methodologies, such as realistic 
inlets, is ongoing in an effort to delineate in vitro-in vivo 
correlations (IVIVC). Applications of LD and cascade 
impaction are evolving. For example, particle/droplet size 
data can be incorporated into physiologically based phar-
macokinetic models (PBPK). Understanding the kinetics 
of particle dissolution, which relates partly to particle size, 
has both implications for local and systemic absorption. A 
recent study by Hochhaus et al. showed good correlation 
between PK and dissolution results [74]. Future discussions 
will determine which of these new approaches becomes a 
recognized standard practice.
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